中 华 人民共和国船舶行业标准

CB／T 3427－2013
代替 CB／T 3427－1992

船舶舵系零部件修理和安装技术要求

Repairing and installing technical requirements for ship rudder parts

前 言

本标准按照GB／T 1．1—2009给出的规则起草。
本标准代替CB／T 3427—1992《船舶舵系零部件修理和安装技术要求》，与CB／T 3427—1992相比主要有下列变化：

- —增加了＂螺栓螺母应旋紧，并装有防松装置。＂（见4．6）。
- —修改了轴向位移公式的＂等号＂修改为＂大于等于＂符号（见 5.1 .4 中公式（1）， 6.1 中公式（2），1992年版的5．4中公式（1），6．1中公式（2））。
- —增加了＂有键连接＂和＂无键连接＂（见 $5.1,5.2$ ）。
- —增加了＂海洋船舵杆包覆衬套时，其锥体根部应加装密封橡皮，装配后压紧量约为 $2 \mathrm{~mm} \sim 3 \mathrm{~mm}$ ，以防锥体锈蚀及海水冲蚀。＂（见 5．2．4）。
- —增加了＂舵系修理中，应对舵承滑油管路畅通和接头质量的情况加以检修。＂（见 9．1）。
- —增加了＂舵系组装结束后，应对法兰连接螺栓及螺母表面，以及裸露水中的舵销螺母包涂水泥，以防冲刷锈蚀。包涂水泥前，应彻底清除表面的修渣和油污。包涂的水泥干硬后，表面不应有龟裂或脱壳现象。＂（见 9．2）。
——增加了＂本标准凡提及允许采用塑料胶合装配时，都应严格遵照塑料胶合工艺执行（包括正确配方，足够的固化时间，彻底清除锈渣及油污等）。＂（见 9．3）。
本标准由全国海洋船标准化技术委员会修船分技术委员会（SAC／TC12／SC1）归口。
本标准起草单位：天津修船技术研究所，天津新港船舶重工有限责任公司。
本标准起草人：张书清，白增林，李雪芹，陈建梅，邢志广，梁晶。
本标准所代替的历次版本发布情况为：
—CB／T 3427－1992

船舶舵系零部件修理和安装技术要求

1 范围

本标准规定了船舶舵系舵柄，舵杆与舵叶，舵销，舵轴等主要零件的修理和安装技术要求。本标准适用于钢质海船，其他类型船舶也可参照使用。

2 规范性引用文件
下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件，仅所注日期的版本适用于本文件。凡是不注日期的引用文件，其最新版本（包括所有的修改单）适用于本文件。

GB／T 699－1999 优质碳素结构钢

3 舵柄修理安装

3.1 舵柄结构型式

舵柄结构型式见图1～图4。

说明：
1 —键；
2 —般柄。
图1 整体式舵柄

说明：
1——柄尾；
2——柄头；
3——垫块；
4——封板；
5——舵角感应柱螺孔。
图2 拨插式舵柄

说明：
1——扇板；
2——围板；
3——柄羖；
4—上扇板；
5——柄臂；
6——扇形齿条；
7——缓冲弹簧。
图3 扇式舵柄
2

说明：
1－舵柄：
2——键；
3——螺栓；
4——垫片；
5——螺母；
6——舵柄上盖。

图4 部分式舵柄

3.2 舵柄与舵杆的安装

舵柄与舵杆的安装配合见表1。
表1 舵柄与舵杆的安装配合

舵杆直径	整体式舵柄安装过盈值	剖分式舵柄安装值	扇式舵柄安装间隙值
<80	$0.040 \sim 0.060$	$+0.028 \sim-0.021$	$0.08 \sim 0.09$
＞80～120	$0.060 \sim 0.080$	$+0.032 \sim-0.025$	$0.09 \sim 0.13$
$>120 \sim 180$	$0.080 \sim 0.090$	$+0.037 \sim-0.028$	$0.13 \sim 0.17$
$>180 \sim 250$	$0.090 \sim 0.110$	$+0.042 \sim-0.033$	$0.17 \sim 0.23$
$>250 \sim 315$	$0.113 \sim 0.130$	$+0.048 \sim-0.036$	$0.23 \sim 0.27$
$>315 \sim 400$	0．130～0．150	$+0.053 \sim-0.040$	$0.27 \sim 0.33$
$>400 \sim 500$	$0.150 \sim 0.172$	＋0．058～－0．045	$0.33 \sim 0.37$
$>500 \sim 630$	0．172～0．184	$+0.063 \sim-0.050$	$0.37 \sim 0.40$
$>630 \sim 800$	0．184～0．204	$+0.068 \sim-0.055$	$0.40 \sim 0.42$

3.3 舵柄与舵杆连接

3．3．1 舵柄键槽中心面与舵柄孔中心线平面对称度公差值应不超过 0.10 mm ，键槽两侧工作面平行度公差值应不大于 $0.15 \mathrm{~mm} / \mathrm{m}$ ，键槽深度偏差应不大于 $0.15 \mathrm{~mm} / \mathrm{m}$ 。
3．3．2 键与键槽的表面粗糙度，剖面尺寸及公差见图 5 和表2。

说明：
1——舵柄：
2——键；
$3 —$ 舵杆。

图5 键与键槽

表2 键与键槽的表面粗糙度，剖面尺寸及公差

轴	键	键 槽								
公称	公称 尺寸 $b \times h$	宽 度 b			深 度				半径 R	
直径		公称尺寸 h	极限偏差		轴 t		琼 t_{1}			
d			轴 N9	殶 JS9	$\begin{aligned} & \text { 公称 } \\ & \text { 尺寸 } \end{aligned}$	极限 偏差	$\begin{aligned} & \text { 公称 } \\ & \text { 尺寸 } \end{aligned}$	极限偏差	最小	最大
65～75	20×12	20	$\begin{gathered} 0 \\ -0.052 \end{gathered}$	± 0.026	7.5	$\begin{gathered} +0.2 \\ 0 \end{gathered}$	4.9	$\begin{gathered} +0.2 \\ 0 \end{gathered}$	0.40	0.60
＞75～85	22×14	22			9.0		5.4			
＞85～95	25×14	25			9.0		5.4			
＞95～110	28×16	28			10.0		6.4			
$>110 \sim 130$	32×18	32	$\begin{gathered} 0 \\ -0.062 \end{gathered}$	± 0.031	11.0		7.4			
$>130 \sim 150$	36×20	36			12.0	$\begin{gathered} +0.3 \\ 0 \end{gathered}$	8.4	$\begin{gathered} +0.3 \\ 0 \end{gathered}$	0.70	1.0
$>150 \sim 170$	40×22	40			13.0		9.4			
＞170～200	45×25	45			15.0		10.4			
$>200 \sim 230$	50×28	50			17.0		11.4			
$>230 \sim 260$	56×32	56	$\begin{gathered} 0 \\ -0.074 \end{gathered}$	± 0.037	20.0		12.4		1.2	1.6
$>260 \sim 290$	63×32	63			20.0		12.4			
$>290 \sim 330$	70×36	70			22.0		14.4			
$>330 \sim 380$	80×40	80			25.0		15.4		2.0	2.5
$>380 \sim 440$	90×45	90	$\begin{gathered} 0 \\ -0.087 \end{gathered}$	$\begin{gathered} \pm \\ 0.0435 \end{gathered}$	28.0		17.4			
＞440～500	100×50	100			31.0		19.5			

3．3． 3 配键后在键槽两侧 0.05 mm 塞尺不得插入，个别修整部分插入长度不得超过键长的 15% 。

3.4 舵柄修理

3．4．1 舵柄孔与舵杆配合松动，允许对舵柄孔进行堆焊或喷镀，堆焊后进行退火处理。
3．4．2 舵柄内孔锈蚀或拉伤面积不超过总面积的 15% 时，允许手工修整。
3．4．3 舵柄不允许有与受力方向垂直的裂纹。
3．4．4 舵柄弯曲每米不大于 1 mm 时允许冷矫直，大于 1 mm 时可用热矫直，加热温度不得超过 $650{ }^{\circ} \mathrm{C}$ 。
3．4．5 舵柄损坏严重允许割换，换新部分的材质含碳量应不大于母材含碳量的 10% ，杂质含量应不大于母材含量。

4 舵杆与舵叶法兰连接

4.1 连接螺栓和螺母一般采用 GB／T 699－1999 中的 35 号或 45 号钢锻件，化学成分，机械性能按 GB／T 699 规定。
4.2 舵杆与舵叶的法兰连接键配合要求同 3．3．2。
4.3 当法兰进行镗削时，法兰的减薄量不得超过法兰公称厚度的 10% ，超过时应进行强度校核。
4.4 法兰组装后结合面间用 0.05 mm 塞尺检查，局部插入段长度不得超过法兰周长的 25% ，插入深度不得超过法兰边至螺孔边最小距离的二分之一。
4.5 连接法兰面涂防腐涂料后进行安装。
4.6 舵杆与舵叶连接法兰的螺栓与孔的安装配合要求按表 3 规定。螺栓螺母应旋紧，并装有防松装置。

表3 舵杆与舵叶连接法兰的螺栓与孔的安装配合

螺栓直径	$\leqslant 30$	$>30 \sim 50$	$>50 \sim 70$	$>70 \sim 100$	$>100 \sim 120$	$>120 \sim 160$	
	$0 \sim-0.10$	$+0.005 \sim$ -0.005	+0.005 \sim	$+0.005 \sim$ +0.02	$+0.01 \sim$ +0.025	$+0.015 \sim$ +0.03	
螺孔	圆柱度	0.02	0.02	0.03	0.03	0.035	0.04
	圆度	0.01	0.01	0.02	0.02	0.025	0.03
螺栓	圆柱度	0.015	0.015	0.02	0.02	0.03	0.03
	圆度	0.01	0.01	0.015	0.015	0.02	0.02

4．7 法兰连接面间不允许加垫片。

5 舵杆与舵叶的锥体连接

5.1 有键连接

5．1．1 舵杆锥体与舵叶锥孔研配，每 $25 \mathrm{~mm} \times 25 \mathrm{~mm}$ 面积内部不少于 2 点油粉斑，接触面积不少于总面积的 70% 。
5．1．2 锥体端部螺母旋紧后，在螺母与舵叶的支撑平面间 0.05 mm 塞尺局部插入深度不大于 10 mm ，插入段周长部不超过螺母周长 10% 。
5．1．3 舵杆与舵叶的锥体连接处腐蚀面积不超过总面积 25% ，孤立锈斑深度不超过大端直径的 1% 时，允许手工修理或采用环氧树脂基修补剂修补；大于 25% 时应进行焊补或喷镀修复。
5．1．4 锥体连接装配时应为过盈配合，其过盈量用安装的轴向位移 ΔS_{1} 表示，其值按表 4 规定，或按公式（1）计算。

表4 锥体连接装配时最小轴向位移对照

单位为竧米

舵杆锥体大端轴颈直径 d_{1}	单位为锥度 k_{1}						
	$1: 7$	$1: 8$	$1: 10$	$1: 12$	$1: 15$	$1: 20$	
	最小轴向位移 ΔS_{1}						
200	0.42	0.48	0.60	0.72	0.90	1.20	
300	0.63	0.72	0.90	1.08	1.35	1.80	
400	0.84	0.96	1.20	1.44	1.80	2.40	
500	1.05	1.20	1.50	1.80	2.25	3.00	
600	1.26	1.44	1.80	2.16	2.70	3.60	
700	1.47	1.60	2.10	2.52	3.15	4.20	

$$
\begin{equation*}
\Delta S_{1} \geqslant 0.3 d_{1} \frac{1}{k_{1}} 10^{-3} \tag{1}
\end{equation*}
$$

式中：
ΔS_{1} ——轴向位移的数值，单位为毫米（mm）；
d_{1} —舵杆锥体大端轴颈直径的数值（不计护套壁厚），单位为豪米（mm）；
k_{1} ——配合面的锥度。
以舵杆锥体与舵叶锥孔紧密贴合作为轴向位移 ΔS_{1} 的起始点。

5.2 无键连接

5．2．1 舵杆锥体与舵叶锥孔研配后每 $25 \mathrm{~mm} \times 25 \mathrm{~mm}$ 面积内不少于 4 个油粉斑，在锥孔的两端 $50 \mathrm{~mm} \sim$ 100 mm 长度上接触斑点应更密实。
5．2．2 依据技术指导文件规定的液压动力和压入量及操作步骤，将舵叶压装到位。需要时作出压力－压入量曲线图。
5．2．3 舵杆锥体与舵叶孔采用无键连接时，轴向位移计算同 6．1。
5.2 .4 海船舵杆包覆衬套时，其锥体根部应加装密封橡皮，装配后压紧量约为 $2 \mathrm{~mm} \sim 3 \mathrm{~mm}$ ，以防锥体锈蚀及海水冲蚀。

6 舵筲或舵轴雉体与舵钮孔连接

6.1 锥体连接过轴向位移按公式（2）计算。

$$
\begin{equation*}
\Delta S_{2} \geqslant 0.5 d_{2} \frac{1}{k_{2}} 10^{-3} \tag{2}
\end{equation*}
$$

式中：
ΔS_{2} —轴向位移的数值，单位为毫米（mm）；
d_{2} —舵销锥体大端直径的数值（不计护套），单位为亮米（mm）；
k_{2} ——舵销锥度。
以舵销和舵销锥孔紧密贴合作为轴向位移 ΔS_{2} 的起始点。

6
6.2 轴向位移量不大于 1 mm 时，允许偏差应不大于 $\pm 0.1 \mathrm{~mm}$ ；轴向位移量大于 1 mm 时，允许偏差应不大于 $\pm 0.2 \mathrm{~mm}$ 。
6.3 锥体连接其他要求同 5.1 。

7 转轴舵舵轴安装

7.1 舵轴锥体连接过盈量计算同 6.1 。
7.2 舵轴法兰连接同第 4 章要求。但允许加固定垫，垫的最小厚度应不小于 3 mm ，垫与法兰应塞焊固定。

8 舵钮孔和尾柱底骨孔修理

8.1 孔表面腐蚀面积不超过总面积 30% ，孤立锈斑深度不超过大端直径的 3% 时，允许用环氧树脂基修补剂进行修补。
8.2 扩孔修理时，孔径小于 200 mm 时，壁厚应不小于公称轴径的 0.5 倍；当孔径大于 200 mm 时，壁厚应不小于公称轴径的 0.35 倍。

9 其他

9.1 舵系修理中，应对舵承滑油管路畅通和接头质量的情况加以检修。
9.2 舵系组装结束后，应对法兰连接螺栓及螺母表面，以及裸露水中的舵销螺母包涂水泥，以防冲刷锈蚀。包涂水泥前，应彻底清除表面的修渣和油污。包涂的水泥干硬后，表面不应有龟裂或脱壳现象。 9.3 本标准凡提及允许采用塑料胶合装配时，均应遵照塑料胶合工艺执行。

中 华 人 民 共 和 国船舶行业标准

船舫舵系零部件修理和安装技术要求

 CB／T 3427－2013＊
中国船舶工业综合技术经济研究院出版
北京市海淀区学院南路70号
邮政编码： 100081
网址：www．shipstd．com．cn电话：010－62185021
船舶标准化管理研究与咨询中心发行
版权专有 不得翻印

开本 $880 \times 1230 \quad 1 / 16$ 印张 0.75 字数 5.10 千字 2014年9月第1版 2014年9月第一次印刷

印数 1－300
＊
CB／T 3427－2013
船标出字第 2013296 号

