J 04

中华人民共和国机械行业标准

无损检测 轴类球墨铸铁超声检测第 2 部分：球墨铸铁曲轴的检测

Nondestructive testing－Ultrasonic testing of nodular cast iron

－Part 2：Testing of nodular cast iron crankshafts
中 华 人 民 共 和 国机械行业标准无损检测 轴类球墨铸铁超声检测

第2部分：球墨铸铁曲轴的检测

JB／T 10554．2－2015
＊
机械工业出版社出版发行
北京市百万庄大街 22 号邮政编码： 100037
＊
$210 \mathrm{~mm} \times 297 \mathrm{~mm} \cdot 0.75$ 印张 $\cdot 23$ 千字
2016年1月第1版第1次印刷定价： 15.00 元
＊
书号：15111•12837
网址：http：／／www．cmpbook．com编辑部电话：（010） 88379399直销中心电话：（010） 88379693
封面无防伪标均为盗版

版权专有 侵权必究

目 次

前言 ．II
1 范围 1
2 规范性引用文件
3 球墨铸铁曲轴概况 1
3.1 曲轴概述 1
3.2 曲轴区域的划分 1
4 人员要求 2
5 检测 2
5.1 检测时机 2
5.2 曲轴的现场检测 ．． 2
5.3 曲轴球化率及珠光体含量的超声检测 3
5.4 曲轴轴颈 R 部位 I 区和 II 区的超声检测 ． 3
5.5 曲轴轴颈III区的超声检测 ．． 3
5.6 曲轴IV区超声检测 3
5.7 缺陷的记录 3
6 质量分级 ．． 4
6.1 分级方法 4
6.21 级曲轴评定方法 4
6.32 级曲轴评定方法 ．． 4
6.43 级曲轴评定方法 4
6.54 级曲轴评定方法 ．． 5
6.6 非正常波形的判断 5
7 检测报告 5
附录 A（规范性附录）QZ－1 型球墨铸铁曲轴试块 7
A． 1 QZ－1 型曲轴试块的技术要求 7
A． 2 QZ－1 型曲轴试块的使用方法
图 1 球墨铸铁曲轴示意图． ． 1
图2 曲轴轴颈区域划分示意图 ．． 2
图 A． 1 QZ－1 型球墨铸铁曲轴试块 ． 7
表1 1 级曲轴各区域内缺陷评定表 ．． 4
表2 2 级曲轴各区域内缺陷评定表 4
表 3 3级曲轴各区域内缺陷评定表 ．． 5
表4 4 级曲轴各区域内缺陷评定表 ．． 5

前 言

JB／T 10554《无损检测 轴类球墨铸铁超声检测》分为两个部分：

- —第1部分：总则；
- —第2部分：球墨铸铁曲轴的检测。

本部分为 $\mathrm{JB} / \mathrm{T} 10554$ 的第 2 部分。
本部分按照 $\mathrm{GB} / \mathrm{T} 1.1-2009$ 给出的规则起草。
本部分代替 JB／T 10554．2－2006《无损检测 轴类球墨铸铁超声检测 第2部分：球墨铸铁曲轴的检
测》，与JB／T 10554．2－2006相比主要技术变化如下：

- —修改了范围（见第1章，2006年版的第1章）；
- —修改了规范性引用文件（见第2章，2006年版的第2章）；
- —修改了球墨铸铁曲轴概况（见第3章，2006年版的第3章）。

本部分由中国机械工业联合会提出。
本部分由全国无损检测标准化技术委员会（SAC／TC56）归口。
本部分起草单位：上海泰司检测科技有限公司，无锡市苏台工业检测技术研究所，上海材料研究所。本部分主要起草人：孙岳宗，章怡明，金宇飞。
本部分所代替标准的历次版本发布情况为：
——JB／T 10554．2－2006。

无损检测 轴类球墨铸铁超声检测
 第2部分：球墨铸铁曲轴的检测

1 范围

$J B / T 10554$ 的本部分规定了球墨铸铁曲轴的超声检测方法及质量分级。本部分适用于发动机缸径在 300 mm 以下的球墨铸铁曲轴。
$G B / T 5616$ 规定的应用无损检测时应遵循的基本规则适用于本部分。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件，仅注日期的版本适用于本文件。凡是不注日期的引用文件，其最新版本（包括所有的修改单）适用于本文件。

GB／T 5616 无损检测 应用导则
GB／T 9445 无损检测 人员资格鉴定与认证
JB／T 10554．1 无损检测 轴类球墨铸铁超声检测 第 1 部分：总则

3 球墨铸铁曲轴概况

3.1 曲轴概述

在内燃机高速运转过程中，曲轴受到拉伸，压缩应力和摩擦作用。因此，选用珠光体球墨铸铁来铸造内燃机的曲轴。

曲轴由轴颈和曲柄构成。轴颈分为主轴颈和连杆轴颈两种。根据气缸的数量，连杆轴颈的数量相应为 $1, ~ 2, ~ 4, ~ 6, ~ 8$ 个或更多。

图 1 所示为一个有 6 个连杆轴颈的球墨铸铁曲轴示意图。

图1 球墨铸铁曲轴示意图

3.2 曲轴区域的划分

根据曲轴在运转过程中所受应力的不同，把每个曲轴颈分为 I，II，III，IV四个区域。曲轴区域划分如图2所示，各个区域范围大小如下：
—I区为各曲轴颈与曲柄交界的 120° 范围内的 R 部位。 I 区是曲轴应力集中的部位，I 区内的缺陷会直接导致曲轴断裂。

注 1：区域宽度 $S=0.2 \phi$（ ϕ 为曲轴主轴颈或连杆轴颈的直径）。
注2：各主轴颈与连杆轴颈相交圆角 R 部位 120° 范围内的为 I 区，其余 240° 范围内的为 II 区。
注 3：各轴颈 I 区和 II 区在轴颈上的究度为各曲柄表面经圆角 R 到轴向距离为 S 的范围，在曲柄上的宽度为各轴颈表面经圆角 R 到曲柄径向距离为 S 的范围。各轴颈除 I 区，II区以外部分为III区。
注 4：各轴颈 I 区和 II 区在轴颈上的深度：对实心轴颈，为轴颈外表面到轴颈中心；对空心轴颈，为轴颈的壁厚。 III区在轴颈上的深度为轴颈直径 ϕ 。
注 5：各轴颈 I区在曲柄上的深度：为主轴颈与连杆颈在曲柄．上 S 宽度范围内一者连线所包围的区域。
注 6：各轴颈 II 区在曲柄上的深度：为曲柄上 S 宽度除 I 区深度范围以外的其余部位。

图2 曲轴轴颈区域划分示意图

- —II区为除I区外各曲轴颈与曲柄交界的 240° 范闱内的 R 部位。
- —III区为除 I ，II区以外的备区轴颈部位。
- —IV区为除 I ，II，III区以外的其他部位。

4 人员要求

从事球墨铸铁曲轴超声检测的人员，应：
a）按 GB／T 9445 的要求进行资格鉴定与认证，并取得相应的等级证书；
b）了解球墨曲轴的铸造，热处理，冷加工等工艺，并经过球墨铸铁曲轴超声检测专业技术培训和考试合格，再经过 400 根曲轴的超声检测实践，具有熟练的操作技能，才能独立进行曲轴的超声检测工作；
c）得到雇主或责任单位工作授权。

5 检测

5.1 检测时机

球墨铸铁曲轴的超声检测应在最终的热处理之后，油孔加工之前进行。

5.2 曲轴的现场检测

现场超声检测球墨铸铁曲轴时，曲轴应放置在两个 V 形钢制成的翻转架上，使曲轴可以做 360° 方

向自由翻转，超声检测仪及整个翻转架应放在固定平台上，以保证检测人员可以对曲轴的任意部位进行检测。

5.3 曲轴球化率及珠光体含量的超声检测

5．3．1 对每根曲轴，首先进行球化率，珠光体和铁素体含量的超声检测，检测方法按 JB／T 10554.1 中 9.4 和 9.5 的规定。

5．3．2 曲轴内缺陷的质量分级按 JB／T 10554.1 中第 11 章的规定。

5.4 曲轴轴颈 \boldsymbol{R} 部位 I 区和 II 区的超声检测

5．4．1 灵敏度校准

用双晶聚焦专用曲轴探头，在附录 A 规定的 QZ－1 型试块上的 $R 30 \mathrm{~mm}$（或 $R 40 \mathrm{~mm}$ ）与 $R 60 \mathrm{~mm}$过渡区的 $R 5 \mathrm{~mm}$（或 $R 8 \mathrm{~mm}$ ）曲面上，使声程为 6 mm 的 $\phi 2 \mathrm{~mm}$ 长横孔反射波高达到 60% 幅度，以此作为起始灵敏度。

5．4．2 缺陷定位和定量

在 R 部位 6 mm 以内不允许有缺陷波出现，在 6 mm 以外缺陷波高超过 60% 幅度时记录其面积范围大小，按 T 级的要求进行评级。

5.5 曲轴轴颈II区的超声检测

5．5．1 灵敏度的校准

选择 2.5 P 14 Z 直探头，在附录 A 规定的 QZ－1 型试块上的 $R 60 \mathrm{~mm}$ 外圆面上测出四次背面回波的幅度（JB／T 10554.1 规定的 U1 级），以此作为III区的起始灵敏度。

5．5．2 缺陷定位和定量

在各曲轴颈超声检测时发现有 U 级缺陷，则记下缺陷级别；再测量缺陷在声束轴线方向的投影面积大小，确定 T 级缺陷的级别，将其作为评级依据。

5.6 曲轴IV区超声检测

5．6．1 灵敏度的校准

用 2.5 P 14 直探头，在附录 A 规定的 QZ－1 型试块上的 $R 30 \mathrm{~mm}$ 与 $R 40 \mathrm{~mm}$ 的平面部分测出有四次底波反射达到 U1 级，将其作为起始灵敏度。

5．6．2 缺陷定位和定量

曲轴IV区主要是曲轴各曲柄销和大头法兰及小头部位，其中各个曲柄销外表面又常是非加工面，可用化学糔糊（羧甲基纤维索水溶液）做耦合剂进行检测，其检测面的耦合损失以实测值（ dB 值）进行补偿。若发现有 U 级缺陷， T 级缺陷，则做出记录，进行评级。

5.7 缺陷的记录

曲轴各区域经按 5．4，5．5 和 5.6 的规定检测后，应分别对每个区域内的缺陷 U 级， T 级做出记录，然后对曲轴质量进行分级。

6 质量分级

6.1 分级方法

按 JB／T 10554.1 中第 11 章的规定，缺陷严重程度分为四个级别（U1 级至 U4 级）和缺陷投影面积大小分为五个级别（ T 1 级至 T 5 级），质量分级由 U 级与 T 级相互组合而成。

根据曲轴各区域应力不同和所允许存在的缺陷大小不同，把曲轴分为四级。
对每根曲轴各轴颈的缺陷，以其中最差的缺陷级别作为整根曲轴评定的级别。
对缸径小于 200 mm 发动机的球墨铸铁曲轴，在评定曲轴级别时，其 T 级缺陷面积大小应乘以系数 $K(K=d / 200, d$ —被检测发动机的缸径）。

6.21 级曲轴评定方法

1 级曲轴按表1的规定进行评定。
表1 1 级曲轴各区域内缺陷评定表

曲轴区域	1 级曲轴的允许缺陷级别
I 区	不存在任何 U 级，T 级铁陷
II区	距表面 6 mm 范围内不存在任何 U 级， T 级缺陷；距表面 6 mm 外，每个区域最多有一处 U 2 级－T1级缺陷
III区	距表面 6 mm 范围内不存在任何 U 级， T 级缺陷；距表面 6 mm 外，每个区域最多有一处 U 2 级－T3级缺陷
IV区	距表面 6 mm 范围内不存在任何 U 级， T 级缺陷；距表面 6 mm 外，每个区域最多有一处 U3 级－T4级触陥

6.32 级曲轴评定方法

2 级曲轴按表 2 的规定进行评定。
表2 2 级曲轴各区域内缺陷评定表

曲轴区域	2 级曲轴的允许缺陷级别
I 区	距表面 6 mm 级－T1 范围内不存在任何 U 级， T T 级缺陷；距表面 6 mm 外，每个区域最多有一处 U 2
II区	距表面 6 mm 范围内不存在任何 U 级，T级缺陷；距表面 6 mm 外，每个区域最多有两处 U2 级－T2 级缺陷
III区	距表面 6 mm 范围内不存在任何 U 级，T级缺陷；距表面 6 mm 外，每个区域最多有两处 U3 级－T3 级缺陷
IV区	距表面 6 mm 范围内不存在任何 U 级，T级缺陷；距表面 6 mm 外，每个区域最多有两处 U3 级－T4 级缺陷

6.43 级曲轴评定方法

3 级曲轴按表 3 的规定进行评定。

表 33 级曲轴各区域内缺陷评定表

曲轴区域	3 级曲轴的允许缺陷级别
I 区	距表面 6 mm 范围内不存在任何 U 级， T 级缺陷；距表面 6 mm 外，每个区域最多有两处 U2 级缺陷
II区	距表面 6 mm 范围内不存在任何 U 级，T级缺陷；距表面 6 mm 外，每个区域最多有两处 U3 级－T2 级缺陷
III区	距表面 6 mm 范围内不存在任何 U 级，T级缺陷；距表面 6 mm 外，每个区域最多有两处 U4 级－T3 级缺陷
IV区	每个区域最多有两处不裸露的 U4 级－T4 级缺陷

6.54 级曲轴评定方法

4 级曲轴按表 4 的规定进行评定。
表 44 级曲轴各区域内缺陷评定表

曲轴区域	4 级曲轴的允许缺陷级别
I区	距表面 6 mm 范围内不存在任何 U 级， T 级缺陷；距表面 6 mm 外，每个区域最多有一处 U2 II 区 级缺陷
距表面 6 mm 范围内不存在任何 U 级，T 级缺陷；距表面 6 mm 外，每个区域最多有一处 U3 级－T3 级缺陷	
III区	距表面 6 mm 范围内不存在任何 U 级，T级缺陷；距表面 6 mm 外，每个区域最多有两处 U4 级－T4 级缺陷
IV区	每个区域最多有两处不裸露的 U4 级－T5 级缺陷

6.6 非正常波形的判断

6．6．1 在曲轴超声检测过程中，若发现曲轴内有非正常波形出现，则超声检测人员不应受上述分级方法的限制。
6．6．2 裂纹是危险缺陷，各级曲轴的内部不应存在任何方向的裂纹。
6．6．3 空心曲轴由于铸造原因而产生偏心时，会产生非正常反射波，当偏心量大于壁厚 20% 时，应做不合格处理。
6．6．4 实心曲轴的中心部位若有密集气孔，其范围超过曲轴直径 8% 的应做不合格处理。
6．6．5 超声纵波检测实心曲轴颈时，在第一次底波后面 1.33 倍和 1.67 倍直径（声程）处会出现两个变型波的迟到信号，可用这两个反射波的变化检测出曲轴颈的表面缺陷。
6．6．6 超声纵波检测空心曲轴颈时，由于空心曲轴内壁对超声波是凸面反射，使反射声束发散，故应重新校准仪器灵敏度，使之达到 U1 级反射波形，并将其作为检测起始灵敏度。
6．6．7 在相同灵敏度下，检测经加工后空心曲轴的内孔壁与非加工的空心曲轴的内孔壁，其底波反射次数是不同的。当非加工空心曲轴内壁有残留泥芯时，对超声波吸收十分严重，应清除残留泥芯后再做超声检测，否则会造成误判。

7 检测报告

每批曲轴经超声检测后，应根据检测结果，按第 6 章的规定进行质量分级，由 2 级以上超声检测人员出具检测报告，其内容为：

JB／T 10554．2—2015

a）曲轴名称，规格型号，件号，数量，配主机型号，验收标准；
b）曲轴材料牌号，生产批号，工序号，热处理工艺；
c）超声检测仪器型号，检测方法，探头规格代号：
d）检测结果，按第 6 章的要求对曲轴质量进行评级，做出结论，必要时应绘出曲轴内部缺陷位置示意图；
e）检测人员，报告审核人员的技术资格等级，签名，报告日期，盖检测报告专用章。

附 录 A

（规范性附录）

QZ－1 型球墨铸铁曲轴试块

A． 1 QZ－1 型曲轴试块的技术要求

A．1．1 试块材料为经正火处理的 QT 700－2 球墨铸铁。
A．1．2 试块球化率 3 级以上，基体组织中珠光体含量 85%（体积分数）以上，无磷共晶碳化铁。
A．1．3 试块内不允许有大于 1 mm 平底孔当量缺陷。
A．1．4 试块表面粗糙度 $R a \leqslant 1.6 \mu \mathrm{~m}$ 。
A．1．5 在试块 $R 30 \mathrm{~mm}$ 与 $R 60 \mathrm{~mm}$ 之间有 $R 5 \mathrm{~mm}$ 过渡，在 $R 40 \mathrm{~mm}$ 与 $R 60 \mathrm{~mm}$ 之间有 $R 8 \mathrm{~mm}$ 过渡。 $R 30$ $\mathrm{mm}, ~ R 40 \mathrm{~mm}, ~ R 60 \mathrm{~mm}$ 曲面厚度各为 15 mm 。
A．1．6 在试块 $R 60 \mathrm{~mm}$ 面上的 $20^{\circ}, ~ 40^{\circ}, ~ 60^{\circ}$ 位置上，与外圆面相距分别为 $3 \mathrm{~mm}, ~ 5 \mathrm{~mm}, ~ 7 \mathrm{~mm}$ 处各钻 $\phi 2 \mathrm{~mm}$ 横通孔。
A．1．7 在试块 $R 40 \mathrm{~mm}$ 面上的 $20^{\circ}, ~ 40^{\circ}, ~ 60^{\circ}$ 位置上，与外圆面相距分别为 $3 \mathrm{~mm}, ~ 5 \mathrm{~mm}, ~ 7 \mathrm{~mm}$ 处各钻 $\phi 2 \mathrm{~mm}$ 横孔，孔深 20 mm 。
A．1．8 在试块 $R 30 \mathrm{~mm}$ 面上的 $30^{\circ}, ~ 50^{\circ}, ~ 70^{\circ}$ 位置上，与外圆面相距分别为 $3 \mathrm{~mm}, ~ 5 \mathrm{~mm}, ~ 7 \mathrm{~mm}$ 处各钻 $\phi 2 \mathrm{~mm}$ 横孔，孔深 20 mm 。
A． 1.9 其他尺寸如图 A． 1 所示。

单位为毫米

图A． 1 QZ－1 型球墨铸铁曲轴试块

A． 2 QZ－1 型曲轴试块的使用方法

A．2．1 利用 $R 30 \mathrm{~mm}$ 与 $R 60 \mathrm{~mm}$ 之间的 $R 5 \mathrm{~mm}$ 过渡区及 $R 40 \mathrm{~mm}$ 与 $R 60 \mathrm{~mm}$ 之间的 $R 8 \mathrm{~mm}$ 过渡区，模拟不同直径的曲轴径与曲柄之问的 R 部位，利用不同声程 $\phi 2 \mathrm{~mm}$ 横孔，检测曲轴 R 部位内部缺陷的声程。
A．2．2 声程为 $2 \mathrm{~mm}, ~ 4 \mathrm{~mm}, ~ 6 \mathrm{~mm}$ 处三个 $\phi 2 \mathrm{~mm}$ 横孔分别代表曲轴 R 部位内部同声程当量直径分别

JB／T 10554．2—2015

为 $2.8 \mathrm{~mm}, ~ 4 \mathrm{~mm}, ~ 4.9 \mathrm{~mm}$ 气孔缺陷。
A．2．3 利用 $R 60 \mathrm{~mm}$ 外圆面及 $R 30 \mathrm{~mm}, ~ R 40 \mathrm{~mm}$ 平面可调节直探头多次反射的灵敏度。
A．2．4 利用 $R 30 \mathrm{~mm}$ 和 $R 60 \mathrm{~mm}$ 外圆面的反射波的位置，测出探头中有机玻璃声程值。

