中华人民共和国行业标准

承压设备无损检测
 第6部分：涡流检测

Nondestructive testing of pressure equipments－
Part 6：Eddy current testing

目 次

前言 196
1 范围 197
2 规范性引用文件 197
3 一般要求 197
4 铁磁性钱管涡流检测 198
5 非铁磁性金属管材涡流检测 201
6 在用铁磁性钢管的远场涡流检测 204
7 在用非铁磁性管涡流检测 207
8 检测结果的评定与处理 211
9 检测报告 211
附录 A（规范性附录）在用承压设备用铁磁性管涡流检测缺陷特征对比试样 212
附录 B（规范性附录）在用承厌设备用非铁磁吽管涡流检测III型对比试样 213

前 言

JB／T 4730．1～4730．6－2005《承压设备无损检测》分为六个部分：

- —第 1 部分：通用要求：
- —第2部分：射线检测；
- —第3部分：超声检测；
- —第4部分：磁粉检测；
- —第 5 部分：渗透检测；
- —第6部分：涡流检测。

本部分为 JB／T 4730．1～4730．6－2005 的第6部分：涡流检测。本部分主要参照 GB／T 5126《铝及铝合金冷拉薄壁管枋涡流探伤方法》，GB／T 5248《铝及铜合金无缣管涡流探伤方法》，GB／T 7735《钢管涡流探伤检验方法》，GB／T 12604．6《无损检测术语 涡流检测》，GB／T 12969.2 《钛及钠合金管材涡流检验方法》，GB／T 14480《涡流探伤系统性能测试方法》，ASME《锅炉压力容器规范》第V卷第8章，ASTM E2096 的有关要求并结合国内的实际情况制定。本部分与 JB 4730－1994 相比主要变化如下：

1．增加了规范性引用文件的要求；增加了相关的名词术语解释。
2．对铁磁性金属管材产品的涡流检测标准试样和验收作了部分改动和改进。
3．对非铁磁性金属管材产品的涡流检测标准试样和输收作了部分改动和改进。
4．增加了在用铁磁性钢管采用远场涡流检测方法。
5．增加了在用非铁磁性管的涡流检测方法。
本部分的附录 A 和附录 B 为规范性附录。
本部分由全国锅炉压力容器标准化技术委员会（SAC／TC 262）提出。
本部分由全国锅炉压力容器标准化技术委员会（SAC／TC 262）归口。
本部分主要起草人：关卫和，沈功田，胡先龙，林俊明，徐可北。

承压设备无损检测
 第6部分：涡流检测

1 范围

JB／T 4730 的本部分规定了承压设备涡流检测方法及质量分级要求。本部分适用于承压设备用导电性金属材料和䁝接接头表面及近表面缺隆检测。

2 规范性引用文件

下列文件中的条款通过 JB／T 4730 的本部分的引用而成为本部分的条款。凡是注日期的引用文件，其随后所有的修改单（不包括勘误的内容）或修订版均不适用于本部分，然而，鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件，其最新版本适用于本部分。

GB／T 5126 铝及铝合金冷拉薄壁管材涡流探伤方法
GB／T 5248 铜及铜合金无缝管涡流探伤方法
GB／T 7735 钢管涡流探伤检验方法
GB／T 12604.6 无损检测术语 涡流检测
GB／T 12969.2 钛及钛合金管材涡流检验方法
GB／T 14480 涡流探伤系统性能测试方法
$\mathrm{JB} / \mathrm{T} 4730.1$ 承压设备无损检测 第 1 部分：通用要求
3 一般要求
3.1 检测系统

3．1． 1 涡流检测系统一般包括涡流检测仪，检测线螣及辅助装置（如磁饱和装置，机械传动装置，记录装置，退磁装置等）。
3．1．2 涡流检测系统应能以适当频率的交变信号激励检测线圈，并能够感应和处理检测线图对被检测对象电磁特性变化所产生的响应。
3．1． 3 涡流检测系统性能应满足本部分及杖关标准要求，有关仪器性能的测试项日与测试方法参照 GB／T 14480 等的有关要求进行。
3．1．3．1 检测能力应满足产品验收标准或技术合同确定的要求。
3．1．3．2 对管材相同尺寸人工缺陷响应的周向录敏度差应不大よ $3 \mathrm{~dB}^{2}$ 。
3．1．3．3 端部检测育区应满足产品验收标准或技术合同的有关要求。
3．1．3． 4 检测系统的缺陷分辨力一般应优于 30 mm ，如果产品验收标准或技术合同另有明确要求，按产品验收标准或技术合同规定执䘕。
3．1．3．5 检测仪器应具有可显示检测信号幅度和相位的功能，仪器的激励频率调节和增益范围应满足检测要求。
3．1．4 检测线圈的形式和有关参数应与所使用的检测仪器，检测对象和检测要求相适应。

JB／T 4730．6－2005
3．1．5 聮化装置应能连续对检测线圈通过的被检件或其局部进行饱和磁化处理。若被检件府允许存在剩磁，磁化装㟯还庙配备退磁装置，该装惪应能右效去除被检件的剩磁。
3．1．6 机械传动装萓应能保证被检件与检测线圈之间以规定的方式平稳地作相对运动，月不应造成被检件表面损伤，不应有影响检验信号的振动。
3．1．7 记录装置应能及时，准确记录检测仪器的输出信号。
3．1． 8 在下列情况下，应使用对比试样对涡流检测设备的灵䑤度进行检查和复验：
a）每次检测开始前和结束后；
b）怀疑检测设备运行不正常时；
c）连续检测时，每 4 h 检查和复验 1 次；
d）合同各方有争议或认为有必要时。
3.2 对比试样

3．2．1 对比试样主要用于调节涡流检测仪检测灵敏度，确定验收水平和保证检测结果准确性。
3．2．2 对比试样应与被检对象具有相同或相近规格，牌号，热处理状态，表面状态和电磁性能。
3．2． 3 对比试样上加工的人丁缺陷应采用适当的方法进行测定，并满足相关标准或技术条件的要求
3．2．4 对比试样上人工缺陷的尺寸不应解释为检测设备可以探测到的缺䧟的最小尺寸。
3.3 被检件

3．3．1 被检件表面应清洁，无毛刺，不应有影响实施涡流检测的粉尘及其他污物，特别是铁磁性粉屑；如不满足要求，应加以清除，清除时が应损坏被检件表面。
3．3．2 被检件表面粗糙度，尺寸公差，弯曲度等参数应满足相关产品技术条件要求。
3.4 检测环境

3．4．1 实施检测的场地温度和相对湿度应控制在仪器设备和被检件允许的范围内。
3．4．2 检测场地附近不应有影响仪器设备正常工作的磁场，震动，腐蚀性气体及其他干扰。

4 铁磁性钢管涡流检测

4.1 适用范围

4．1．1 本条规定了承压设备用铁磁性无缝钢管，焊接钢管（理弧焊钢管除外）等管材产品的涡流检测方法。
4．1．2 本条适用于外烃不小于 4 mm 钢管的涡流检测。
4．1．3 木条验收等级分为 A 级和 B 级（兄表 1）。

表 1 对比试样通孔直径
mm

验收等级A		验收等级 B	
钢管外径D	通孔直径	钢管外径 D	通孔直径
$D \leqslant 27$	1.20	$D \leqslant 6$	0.5
$27<D \leqslant 48$	1.70	$6<D \leqslant 19$	0.65
$48<D \leqslant 64$	2.20	$19<D \leqslant 25$	0.80
$64<D \leqslant 114$	2.70	$25<D \leqslant 32$	0.9
$114<D \leqslant 140$	3.20	$32<D \leqslant 42$	1.10
$140<D \leqslant 180$	3.70	$42<D \leqslant 60$	1.40
D >180	双万协议	$60<D \leqslant 76$	1.80
		$76<D \leqslant 114$	2.20
		$114<D \leqslant 152$	2，70
		$152<D \leqslant 180$	3.20
		D >180	双方协议

4.2 检测方法

4． 2.1 当采用穿过式线圈检测时（见图 1），钢管最大外径一般不大丁 $180 \mathrm{~mm}_{\mathrm{c}}$ 在靠近检测线圈的钢管表面卜，其检测灵敏度最高，随着与检测线圈距离的增加，检测，火敏度逐渐降低

汒：本图是一种多线圈方案的简图，多线圈可以是分列式或初级线圈，双差动线圈等。
图 1 穿过式线圈涡流检测示意图
4．2．2 当使用旋转的钢管／扁平式线圈对钢管进行检测时，钢管和线圈应彼此相对移动，其月的是使整个钢管表面都被扫查到，典型的两种旋转方式见图 2，使用这种技术时，钢管的外径没有限制。此外，也可采用钢管旋转并直线前进的方法（此时，扁平线圈固定），这种技术主要用于检测外表面卜的裂纹。

a）线㴻旋转检测方法（钢管相对于旋转的扁平线圈组件直线移动）

b）钢管旋转检测方法（扁平线圈
［内人定钢管旋转并直线移动）

注：a）和 b）中的扁平线堌可以采用多种形式，例如单线圈，多线暮等多种配置。

图2 旋转的钢管／扁平式线圈检测示意图（螺旋式扫描）

4． 2.3 焊接钢管焊接接头的检测，除采用外穿过式探头进行检测外，也可采用放置式线圈，放置式线圈应有足矽的宽度，通常做成扇形或平面形，以满足焊接接头在偏转的情况下得到扫查，见图3。

注：本图中的扇形线圈可以制成多种形式，取决于使用的设备和被检测钢管。
图3 扇形线圈焊接接头涡流检测示意图
4．3 对比试样
4．3．1 对比试样卜人T缺陷的形状为通孔或槽。
4．3．2 通孔
4．3．2．1 在试样钢管中部加T． 3 个通孔，对于焊接钢管至少应有 1 个孔在焊缝上，沿圆周方向相峆 $120^{\circ} \pm 5^{\circ}$ 对称分布，轴向间距不小于 200 mm 。此外，在对比试样钢管端部小于或等于 200 mm 处，加工 2个相同尺寸的通孔，以检査端部效应，见图4。

图4 对比试样上通孔位置
4．3．2．2 对比试样上通孔尺寸见表1。
4．3．2．3 钻孔时应保持钻头稳定，防止局部过热和表面产生毛剌。当钻头直径小于 1.10 mm 时，其钴孔直径不得比规定值大 0.10 mm 。当钻头直径不小于 1.10 mm 时，其钻孔直径不得比规定值大 0.20 mm 。

4．3．3 槽

槽的形状为纵向矩形槽，平行于钢管的主轴线。槽的宽度不大于 1.5 mm ，长度为 25 mm ，其深度为管子公称壁厚的 5% ，最小深度为 0.3 mm ，最大深度为 1.3 mm 。深度允许偏差为槽深的 $\pm 15 \%$ ，或者是 $\pm 0.05 \mathrm{~mm}$ ，取其大者。
4．3． 4 根据检测目的，经供需双方协商，对比试样的人工缺陷可以加工成通孔或纵向矩形槽。

4．4 检测设备

4．4．1 磁饱和装置应能对所检测的区域施加强磁场，使其磁导率趋于常数。
4．4．2 检测仪器应包含 $1 \mathrm{kHz} \sim 500 \mathrm{kHz}$ 的工作频率范围。

4.5 检测条件与步骤

4．5．1 检测设备通电后，应进行不低于 10 min 的系统顶运转。
4．5．2 按规定的验收水平调整灵敏度时，信噪比应不小于 6 dB 。作为产品验收或质量等级评定的人工䍂陷响应信号的幅度应在仪器苂光屏满刻度的 $30 \% \sim 50 \%$ 。对比试样和检测线圈之间的相对移动速度应与被检钢管与检测线膡之间的实际相对移动速度相同。
4．5．3 对比试样中间 3 个对称通孔的显示幅度应基本一致，选取最低幅度作为检测设备的触发报警电平。

5 非铁磁性金属管材涡流检测

5.1 适用范围

5．1．1 本条规定了承压设备用非铁磁性金属管材产品的涡流检测方法。
5．1． 2 本条适用于外穿过式线圈检测系统，对于铜及铜合金无缝管，可检测管材的壁廟小于或等于 3 mm ，外径小于或等于 50 mm ；对于铝及铝合金管，可检测管材的壁厚小于或等于 2 mm ，外径小于或等于 38 mm ；对于钠及钛合金管，可检测管材的壁厚小于或等于 4.5 mm ，外径小于或等于 30 mm 。其他规格的管材制品可参照此条执行。
5．1．3 对于奥氏体不锈钢及类似合金管材的检测范围，对比试样和检测方法，参照第 5 旁内容执行。

JB／T 4730．6－2005

5.2 铜及铜合金无缝管材检测方法

5．2．1 对比试样 1 人 T缺陷为垂直于管壁的通孔。沿轴向加工 5 个相同孔径的通孔，其中， 2 个通孔分别距离管端小于或等于 100 mm ，中间 3 个通孔之间的间距为 $500 \mathrm{~mm} \pm 10 \mathrm{~mm}$ ，并沿圆周方向相隔 120° $\pm 5^{\circ}$ 分布，见图5。

图5 对比试样上通孔位置
5． 2.2 人T缺陷的孔径尺寸与被检管材外径的对应关系应符合表 2 的规定。孔径偏差不大于 $\pm 0.05 \mathrm{~mm}_{\circ}$
表2 无缣铜及铜合金对比试样管人工缺陷的孔径尺寸
mm

管材外径 D	通孔直径 d
$D \leqslant 10$	0.4
$10<D \leqslant 20$	0.6
$20<D \leqslant 30$	0.8
$30<D \leqslant 40$	1.0
$40<D \leqslant 50$	1.2

5． 2.3 检测线圈内径应与被检管材外径相匹配，其填充系数大于或等于 0.6 。检测频率范围为 $1 \mathrm{kHz} \sim$ 125 kHz 。
5． 2.4 按规定的验收水平调整灵敏度时，信噪比大于或等于 10 dB 。人工缺暚响应信马的幅度应在仪器荧光屏满刻度的 $30 \%-50 \%$ 。
5．2． 5 中间 3 个对称通孔的显示幅度应基本一致，选取其最低幅度作为检测设备的触发一报警电平。
5．2．6 对比试样和检测线圈之间的相对移动速度，应与工作状态下被检管材和检测线圈之间的相对移动速度相同，且应满足仪器允许的检测速度上限要求。
5．2．7 对铝瀪合金管材，若有必要，可以使用磁饱和装置，使被检凶域达到磁饱和。
5.3 铝及铝合金管材检测方法

5．3．1 对比试样に人工缺陷为垂直于管壁的通孔，沿轴向加上 5 个相同孔径的通孔，其中， 2 个通孔分别蹗离管端 $100 \mathrm{~mm} \pm 5 \mathrm{~mm}$ ，中间 3 个通孔之间的间距为 $150 \mathrm{~mm} \pm 10 \mathrm{~mm}$ 并周向相隔 $120^{\circ} \pm 5^{\circ}$ 分布，见洛6。

图6 对比试样管规格及相应通孔位置
5．3．2 人工缺侔的孔径尺寸与被检管材外径的对应关系应符合表 3 的规定，孔径偏差 $\pm 0.05 \mathrm{~mm}$ 。

表3 铝及铝合金对比试样管人工缺陷的孔径尺寸
mm

对比试样管外洤 D	通孔直径 d
$6<D \leqslant 10$	0.5
$10<D \leqslant 20$	0.8
$20<D \leqslant 30$	1.2
$30<D \leqslant 38$	1.3

5．3．3 检测线圈的内径与被检管材外径相匹配，其填充系数大于或等于 0.6 。检測频率范围为 $\mathrm{IkHz} \sim$ 125 kHz 。
5．3．4 按规定的验收水平调整灵敏度时，信噪比大于或等于 6 dB 。人工缺陷响应信号的滆度应在仪器荧光屏满刻度的 $30 \% \sim 50 \%$ 。
5．3．5 中间 3 个通孔的显示幅度应基本一致，选取最低幅度作为检测设备的触发一报警电半。
5． 3.6 对比试样和检测线圈之间的相对移动速度，应与工作状态下被检管材和检测线圈之间的相对移动速度相问，日应满足仪器允许的检测速度上限要求。
5.4 钛及钛合金管检测方法

5．4．1 对比试样上人工缺陷为垂直于管壁的通孔。沿轴吅加工 5 个相可孔径的通孔，其け 1,2 个通孔分别距离管端 $100 \mathrm{~mm} \pm 5 \mathrm{~mm}$ ，中间 3 个通孔之间的间距为 $300 \mathrm{~mm} \sim 500 \mathrm{~mm}$ ，并沿圆周方何相隔 $120^{\circ} \pm 5^{\circ}$分布，参见图5
5．4． 2 对比试样上通孔直径为 $0.8 \mathrm{~mm} \pm 0.05 \mathrm{~mm}^{\circ}$
5．4．3 检测线圈的内径与被检管材外径相匹配，其填充系数大于或等于 0.6 检测频察为 $1 \mathrm{kHz} \sim 125 \mathrm{kHz}$ 。
5．4．4 按规定的验收水平调整灵敏度时，信嗓比大于或等于 6 dB 。人丁缺陷响应信号的幅度应在仪器荧光并满刻度的 $30 \% \sim 50 \%$ 。
5．4．5 中间 3 个通孔的显示幅度应基木一致，选取最低幅度作为检测设备的触发一报警电平。
5．4．6 对比试样和检测线圈之间的相对移动速度，由与工作状态下被检管材和检测线圈之间的相对移动速度相同，且应满足仪器允许的检测速度上限要求。

JB／T 4730．6－2005
6 在用铁磁性钢管的远场涡流检测
6． 1 适用范围
6．1．1 本条规定了对在用铁磁性钢管采用远场涡流检测的方法。
6．1． 2 本条适用于外径为 $12.5 \mathrm{~mm} \sim 25 \mathrm{~mm}$ ，壁厚为 $0.70 \mathrm{~mm} \sim 3 \mathrm{~mm}$ 的铁磁性钢管的远场涡流检测。在此规格之外的钢管，可参照此条执行。

6．2 检测设备

6．2．1 检测仪器
6．2．1．1 采用电／压平面显示方式，实时给出缺陷的相位，幅值等特征信息，可将干扰信号与缺陷信号调整在易于观察及设置报警区域的相位上。
6．2．1．2 可采用自动平衡技术。
6．2．1．3 频率范围为 $10 \mathrm{~Hz} \sim 5 \mathrm{kHz}$ ；仪器应具有良好的低频检测特性。
6．2．1． 4 应至少具备 2 个独立可选频率和 4 个非分时的检测通道；具备存储，分析等功能。
6．2．2 探头
6．2．2．1 如图7a）所示，远场涡流激励线圈与检测线圈间距为被检管子内径的 $2 \sim 3$ 倍，检测线圈的探头必须具有合适的直径，应能顺利通过所要检测的管子，并具有尽可能大的填充系数。
6．2．2．2 如图 7b）所示，采用两个激励线圈，一个检测线圈，或一个激励线圈，两个检测线圈，这种结构探头用于降低由支撑板和其他导体产生的干扰信号。
6．2．2．3 绝对检测线圈和差动检测线圈——绝对检测线圈主要用于大范围渐变缺陷的检测，差动检测线圈对管道长度方向上的突变性缺陷具有最大响应信号。
6．2．2．4 多点式检测线圈。如图 7c）所示多点式检测线圈用于检测管子周向壁厚的偏差。多点式线圈相对于管子既可以径向放置，也可以轴向放置。用多点式检测线圈时，应采用有相应通道数的检测仪器。

注：箭头表示从激励线圈到检测线圈电滋场能量流的方向。

图7 远场涡流检测探头结构示意图

6.3 远场涡流检测对比试样

6．3．1 对比试样原则上应满足 3.2 的规定，如县达不到规定要求，则对比试样管应选取与被测管的公称直径相同，壁厚和材料特性，规格相近的铁磁性管。

6．3．2 对比试样管人丁缺陷的深度标示为缺陷最深点的深度，并用管道公称壁厚的白分比表示。缺陷深度的尺寸精度任 $\pm 2 \%$ 以内，其他方同上的尺寸精度在 $\pm 0.25 \mathrm{~mm}$ 以内。

6．3．3 远场涡流对比试样管的人工缺陷尺寸。
6．3．3．1 圆底孔——用直径 10 mm 的球形钻头，加丁深度 50%（图 8 缺䧟 A）。
6．3．3．2 通孔——通孔的直径为壁厚的 1.25 倍（图 8 缺陷 B）
6．3．3．3 周向窄凹槽——槽深为 20% 壁厚（图 8 缺降C），槽宽为 $3 \mathrm{~mm}_{\circ}$
6．3．3．4 周向宽凹槽——槽深为 20% 壁厚（图 8 缺陷 D），槽宽大于或等于 2 停管公称直径 ${ }_{a}$
6．3．3．5 单边缺陷：I 型对比试样管的单边缺陷——深度 60% ，轴向长度为 15 mm 的周向单边缺陷 ［图8a）缺陷 E］，其周向幅度为 $180^{\circ} \sim 270^{\circ}$ 。II 型对比试样管的单边缺陷——深度 50% ，轴向长度大于或等于 2 倍管外径的铣槽［图8b）缺陷E］。

b）远场满旅檐测对比试样管II（除候降外，其他间 1）

图8 远场涡流检测对比试样管 I 和 II
6．3．4 远场涡流检测对比试样管用于检测前调整仪器检測灵敏度。
6．3．5 远场涡流检测对比试样管一般不能用于缺陷特征分析，除非其人T缺陷与所要检测的缺陷相似，如检测时确有需要，叮以按附录 A（规范性附录）制作缺陷特征对比试样。
6.4 操作步骤

6．4．1 仪器调整
6．4．1．1 工作频率一一使用远场涡流检测对比试样，调整工作频率，调整后应使电磁场能较奴地穿透管
壁，使仪器对最小缺欫的检测有足够的灵敏度。
6．4．1． 2 调整仪器其他工作参数，特别是仪器的滤波参数使其适应探头的移动速度
6．4．1．3 可使用辅助频率测试，为进 步分析提供更多的数据。

6．4．2 通过远场涡流检测对比试样管人工缺陷測试，确认系统调整达到了所要求的吴敏度。
6．4．3 校验。检测过程11每隔 $2 h$ ，须用对比试样管对仪器和探头进行一次综合校验。
6． 4.4 如果系统校验时对比试样管的人丁缺䧄特征参数发生明显的改变，前次系统校验之后检测过的管子应重新进行检测。
6．4．5 信号分析
6．4．5． 1 使用从远场涡流检测对比试样管获得的数据作为仪器缺陷检测能力的衡量标准，判断被检管是否有缺陷存在。
6．4．5．2 辅助检测可选择适当的辅助检测方法对有问题的区域进行再次检测，如采用专用视频内窥镜进行确认。
6．5 检测
6．5．1 检验前，应对在用铁磁性钢管内表而进行清洗，并满足检測要求。
6．5． 2 整个检测过程中，尽可能地使探头移动速度恒定平稳。推荐使用探头推拔器作辅助检测装置，保其不得对管子内壁造成损伤。探头在管内的检测速度，视所用仪器利选择的参数而定，一般不超过 $10 \mathrm{~m} / \mathrm{min}_{\text {。 }}$

7 在用非铁磁性管涡流检测

7.1 适用范围

7．1． 1 本条规定了来用内穿过式线圈检测在用非铁磁性管的涡流检测方法。
7．1． 2 本条适用了外径 $10 \mathrm{~mm} \sim 50 \mathrm{~mm}$ ，壁序为 $0.75 \mathrm{~mm} \sim 3.0 \mathrm{~mm}$ 的非铁磁性管涡流检测。
7．1．3 本条所涉及的涡流检测，通常是在设备检修时，或业主认为有必要吋进行。

7．2 检测设备

7．2．1 涡流探伤仪应至少有 2 个独少可选频率，频率范围为 $1 \mathrm{kHz} \sim 1 \mathrm{MHz}$ 。
7．2．2 涡流探伤仪除具备检出管子裂纹，腐蚀坑和重皮等一般缺陷能力外，还应具备测量分辨管子壁厚均匀减薄的能力，当使用同时具备差动，绝对通道检青能力的仪器时，上述T作叮一次检测完成；当使用的仪器无此功能时，単分别作差动和绝对通道检测。
7.2 .3 仪器应包括激励，信号处理，相位调节，滤波，混频处理等单元，并有柤应的报警设置，阻抗平面昆示以及可常的记录装㯰。
7．2．4 内穿过式探头与涡流探伤仪组合，应能在管壁内产生感应电流，检测出管材损伤情况，并能有效地消除䇾板，支撑板，噪声等干扰信号影响。
7．2．5 探头的外径为根据被检管子以径加以确定，以保证尽可能大的填充系数。
7． 2.6 当采用探头推拔器时，其机械传动装㯰应保证探头匀速，平稳地通过管子，不得造成管子内表面损伤，不得有影响检验信号的振动。
7． 3 对比试样
7．3．1 对比试样应满足 4.3 的要求。
7．3．2 对比试样上人丁缺陷的人寸不应解释为检测设备叮以探测到的缺陷的最小人寸。
7．3．3 对比试样上人工缺陷的形状为通孔，平底孔和周向切槽，
7．3．4采用I型对比试样调整检测系统，对比试样上人T缺陥的位置和大寸如下（见图9）：
a）A 定 1 个贯穿管壁的通孔。对外径小 \int 或等于 20 mm 的管子，孔径为 1.3 mm ；对外径大于 20 mm的管子，孔径为 1.7 mm 。
b）B 是 4 个平底孔。孔径为 4.8 mm ，环绕管子的圆周并在同一横截面上成 90° 分布，从外壁面钻人，深度为壁厚的 20% 。
c）C 是 1 个 360° 的周向切槽。槽宽为 3.2 mm ，深度为壁厚的 20% ，从管子的外壁面切人（供绝对式探头校正用，可选用）。
d） D 是 1 个 360° 的周向切槽。槽宽为 1.6 mm ，深度为壁厚的 10% ，从管子的内壁面切入（供绝对式探头校正用，可选用）。

汪：如果能证明可以获得相同的效果，可以采用其他的人T缺陷对比试样管。

图9 I 型对比试样上人工缺陷的形状及位置示意图

7．3．5 采用II型试样测试缺陷深度与相位关系的曲线，对比试样上人工缺陷的位置和尺寸如下（见图 10）：
a）A 是 1 个穿透壁厚的孔，管子外径小于或等于 20.0 mm ，孔径为 1.3 mm ，管子外径大于 20.0 mm ，孔径为 1.7 mm 。
b）B 足 1 个外壁面平底孔，孔径为 2.0 mm ，深度为壁厚的 80% 。
c） C 是 1 个外壁面平底孔，孔径为 2.8 mm ，深度为壁厚的 60% 。
d）D是1个外壁百平底孔，孔径为 4.8 mm ，深度为壁厚的 40% 。
e）E 是 4 个外壁面平底孔，孔径为 4.8 mm ，环绕管子的圆周并在同一横截面上成 $90^{\circ} \pm 5^{\circ}$ 分布，深度为壁厚的 20% ，从外壁而钻人。

注：如果能证明可以获得相同的效果，也可以采用其他的人工缺陷对比试样管。
娄10 II 型对比试样上人工缺陷的形状及位寘示意图
7． 3.6 所有人工缺陷的轴向间隔及与管端的距离，以在检验条件下能清楚地分辨为准（一般推荐距端头 200 mm ，相互间隔为 $100 \mathrm{~mm} \sim 300 \mathrm{~mm}$ ）。
7.3 .7 人工缺陷平底孔中心或刻槽的深度，其误差不超过规定深度的 $\pm 20 \%$ ，或是 $\pm 0.08 \mathrm{~mm}$ ，取两者中的较小值。其他所有人工缺陷的加工尺寸误差都应小于 $\pm 0.25 \mathrm{~mm}$ 。
7．3． 8 经合同双方协议，可以采用附录 B（规范性附录）所示III型对比试样。

7.4 仪器调整

7．4．1 差动式探头主检测频率的调整
7．4．1．1 选定一个主检测频率（一般为 $10 \mathrm{kHz} \sim 400 \mathrm{kHz}$ ），使对比试样上 4 个深度为 20% 壁厚的平底孔的涡流信号比穿透管壁的通孔涡流信号相位角沿顺时针方向相差为 $50^{\circ} \sim 120^{\circ}$ ，见图 11 。

图 11 采用差动通道经过正确调整的典型涡流信号阻抗平面图

JB／T 4730．6－2005
7．4．1．2 拉出探头刚， 20% 壁厚的平底孔的涡流信号轨迹见图 11,1 朝下向左， $2, ~ 3$ 朝上向右， 4 向下网到原点。
7．4．1．3 调节仪器的相位，使通孔信号的相位角在 $40^{\circ} \pm 5^{\circ}$ 。拉出探头时，信号轨迹如图 11 所示。
7．4．1．4 调节仪器的增益，使通孔信号幅值相当于水平满刻度的 40% 左右。在此灵敏度下，应能清晰地分辨出每一个人工缺俻信号的相位和幅值。
7．4．2 绝对探头主检测频率的调整
7．4．2． 1 选定一个主检测频率（一般为 $10 \mathrm{kHz} \sim 100 \mathrm{kHz}$ ），使从原点到通孔信号顶点的连线和水平之问的相位角约为 40° 。何时使原点到来自四个深度为壁厚的 20% 平底孔的信号顶点的连线与上述通孔信号相应连线间相位角为 $50^{\circ} \sim 120^{\circ}$（见图 12 ）。可在阻抗平面图上旋转 180° 观测。

图 12 采用绝对式探头经过正确调整的典型涡流信号阻抗平面图
7．4．2．2 将绝对式探头置于对比试样管的无人工缺陷部位，调节仪器使光点在平衡位置。
7．4．2．3 调节仪器的增益，使通孔信号的幅值相当于水平满刻度的 40% 左左。
7．4．2．4 调予仪器的相位，使内壁切槽的涡流信与的村位角位于与显示屏水平线成 $\pm 5^{\circ}$ 范闱内。
7．4．3 选定辅助检测频率（ 般为主检测频率的 $1 / 2$ 或 $1 / 4$ ）以抑制管板和支撑板信号。管板和支撑板样管由与实际管板和支撑板材质热处理状态相同的材料制成。增加管板后，在混合通道中，每一个人工缺陷信号的柤位和幅值应能清晰地䒚示。
7．4．4 记录对比试样上各人上缺陷的涡流信号。
7．4．5 为确定端部效应信号抑制的管子长度，选择一峎低背景噪声的管子并在距管子端部 150 mm ～ 200 mm 处开 标定通孔，让检测线圈通过管子，如果探测不到人T缺陷，则应离管端部更远处再制作另 \cdots 个人工缺陷。如果能探测到人T缺陷，则将管子端部截去 10 mm ，如此反复，直到不再探测到人T缺陷为止。所能探测到的人工缺陷全管端的最短践离即是端部效应信号抑制的管子长度。
7.5 检测

7．5．1 探头这进，拉治可采用于动方式，也可采用机械传动方式，丽者都应能识别探头在管子中的位置，并保持速度均匀。
7．5．2 检验时探头最大拉出速度视所用仪器和选择的参数而定，一般术超过 $20 \mathrm{~m} / \mathrm{min}_{\text {。 }}$ 。
7．5．3 对所有缺陷信号利怀疑信号的数据都应做好记录。
210

8 检测结果的评定与处理

8.1 综合评定

检验结果可根据缺隆响应信号的幅值和相位进行综合评定。缺陷深度应依据缺陷响应信号的相位角进行评定。

8.2 制造管材的评定与处理

8．2．1 质量验收等级的规定应按供需双方合同，或按有关产品标准要求。
8．2．2 经检俭未发现尺寸（包括深度）超过验收标准缺陷的管材为涡流检测合格品。
8．2．3 经检验发现有上寸（包括深度）超过验收标准缺陷的管材，可复探或应用其他检测方法加以验证。若仍发现有超过验收标准的缺陷，则该管材为涡流检测不合格品。
8．2．4 不合格的管材经设计部门或委托检验方同意，可在缺陷部位进行清除或修补后重新进行检测。如满足 8．2．2 要求可作为检测合格品，否则为检测不合格品。

8.3 在用设备的评定与处理

在用设备的合格等级应与业主协商，按有关规程确定。
9 检测报告
一般应包括以下内容：
a）委托单位；
b）被检工件：名称，编号，规格，材质，坡口型式，焊接方法和热处理状况；
c）检测设备：涡流检测仪及探头型号（差动，绝对），名称，型号和源尺寸；
d）检测规范：检测使用的参数（频率，速度），对比试样的牌号，规格及编号；
e）工件检测部位应在草图上予以标明，如有因检测方法或几何形状限制而检测不到的部位，也应加以说明；
f）检测结果及质量分级，检测标准名称和验收等级；
g）检测人员和责任人员签字及其技术资格；
h）检测日期。

附 录 A
 （规范性附录）
 在用承压设备用铁磁性管涡流检测缺陷特征对比试样

A． 1 缺陷特征对比试样管

a）通孔，圆底孔和平底孔——用于表征凹陷型缺鲉［ 见图 A． 1 中 a）］；
b）周向凹槽——周向凹槽其在管道圆周方向的任意一点具有相同的壁厚［见图 A． 1 中 b）］；
c）单边缺陷——在管道一侧的缺陷［见图 A． 1 巾 c）］；
d）支撑板——支撑板其孔径应比对比试样管外径大 $0.1 \mathrm{~mm} \sim 0.4 \mathrm{~mm}$ 即可。为防止电磁波绕过支搼板传播，支擈板人寸应远大于对比试样管外径。

a）凹坑和通孔

b）周向凹漕

图 A． 1 用于表征缺陷特征的对比试样管人工缺陷

附 录 B
 （规范性附录）
 在用承压设备用非铁磁性管涡流检测而型对比试样

B． 1 在用承压设备用非铁磁性管涡流检测III型对比试样

用于测试系统检出壁厚均匀减薄，长条形缺陷的能力。该试样应有下述几种人工缺陷：
a） 1 个 360° 的周向切槽。槽宽为 200 mm ，深度为壁厚的 20% ，从管子的外壁面切入。
b） 1 个纵向切槽。槽宽为 0.2 mm ，长度为 $3 \mathrm{~mm} \sim 5 \mathrm{~mm}$ ，深度为壁厚的 20% ，从管子的外壁面切入。
c） 1 个纵向切槽。槽宽为 0.2 mm ，长度为 200 mm ，深度为壁厚的 $20 \% \sim 30 \%$ ，从管子的外壁面切人。

图B． 1 III 型对比试样

